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Abstract

We provide the first examination of all-pay auctions using continuous-time protocols,
allowing subjects to adjust their bid at will, observe payoffs almost instantaneously,
and gain more experience through repeated-play than in previous, discrete-time, im-
plementations. Unlike our predecessors—who generally find overbidding—we observe
underbidding relative to Nash equilibrium. To test the predictions of evolutionary
models, we vary the number of bidders and prizes across treatments. If two bidders
compete for a single prize, evolutionary models predict convergence to equilibrium.
If three bidders compete for two prizes, evolutionary models predict non-convergent
cyclical behavior. Consistent with evolutionary predictions, we observe cyclical behavior
in both auctions and greater instability in two-prize auctions. These results suggest that
evolutionary models can provide practitioners in the field with additional information
about long-run aggregate behavior that is absent from conventional models.
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1 Introduction

Nash equilibrium often provides an approximate characterization of long-run behavior, but

the short-run behavior of inexperienced agents often bears little resemblance to equilibrium

predictions (see Davis and Holt, 1993). In all-pay auctions, Nash equilibrium can involve

non-uniform mixed strategies over a continuum of actions. Considering the complexity

of such equilibria, it seems unsurprising that inexperienced subjects would fail to play it.

Previous studies find that subjects consistently overbid relative to Nash equilibrium and often

play dominated strategies by overbidding beyond the actual value of the prize (Dechenaux

et al., 2014; Gneezy and Smorodinsky, 2006; Lugovskyy et al., 2010). After many periods

of experience, overbidding often decreases, but is not eliminated (Davis and Reilly, 1998;

Lugovskyy et al., 2010). It remains unclear how much overbidding would persist in the long

run as subjects continue to gain experience.1 Experimental procedures designed to match

the assumptions of long-run play, such as continuous-time experimental protocols, may help

address this question.

This paper reports the first experimental investigation of the all-pay auction in continuous

time. Subjects could adjust their bids at will, receive almost instantaneous feedback, and

earn mean-matching payoffs continuously over time. Continuous-time experimental protocols

effectively reduce the length of discrete periods to near instants. Mean-matching protocols

provide subjects with information about their expected payoff from being randomly matched

against others. Together, these experimental protocols provide subjects with far more

experience in a fraction of the time relative their conventional discrete-time counterparts,

allowing boundedly rational subjects to more easily assess the expected profitability of their

strategies.

In contrast to previous experimental studies of the all-pay auction—all of which used

discrete-time protocols—mean bids did not exceed the Nash predictions. On average, subjects

slightly underbid relative to Nash and earned positive payoffs. Subjects rarely played

dominated strategies; bids only exceeded the value of the item in roughly 3% of observations.

1Inexperience is one of many explanations for overbidding relative to Nash equilibrium in all-pay auctions
(see Dechenaux et al., 2014). Preference-based explanations (e.g., joy of winning an item) may cause
overbidding to continue in the long-run. We explore this issue in more detail in our concluding section.
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These initial findings suggest that previous overbidding results may not apply to settings

where individuals accumulate a large amount of experience, a result that may have bearing

in the field. As Dechenaux et al. (2014) notes, empirically studying applications of the

all-pay auction is often infeasible as the cost of effort is frequently unobservable. While

experiments are imperfect substitutes for field settings, they provide an alternative method

of investigation. If competitors in the field have extensive experience, we should cautiously

interpret the overbidding observed in past discrete-time experimental studies where subjects

received far less experience. The use of continuous time experimental protocols may provide

a bridge from these conventional discrete-time laboratory settings to field settings where

agents accumulate extensive experience.

While average bids did not exceed Nash predictions, aggregate bidding behavior did

exhibit strong cyclical patterns that run contrary to Nash predictions. Evolutionary models

predict cyclical behavior in all-pay auctions because outbidding one’s opponent is optimal only

if their bid is below the value of the prize. Once bids are at or above the value of the prize,

the best response is to bid zero and the process repeats. This results in a cyclical pattern of

gradual bid increases followed by sharp decreases. Consequently, all-pay auctions provide a

particularly informative test of evolutionary models as their evolutionary predictions can be

very different from their equilibrium predictions. The new application of continuous-time

and mean-matching experimental protocols to this environment mirrors the structure of

evolutionary models. We test evolutionary dynamics in two distinct auctions as between-

subjects experimental treatments. In auction 1, two bidders compete for a single prize. In

auction 2, three bidders compete for two prizes. Nash equilibrium predicts a fixed distribution

of bids in each auction. In contrast, evolutionary models predict cyclical behavior in both

auctions, convergence to a fixed point in auction 1, and persistent non-convergence in auction

2.2

Aggregate behavior exhibited persistent cycles in both auctions and greater instability

in auction 2 than 1. Because these results are predicted by evolutionary models but not

2Time-averaged evolutionary predictions are similar to the Nash predictions, but dynamic evolutionary
predictions are very different from the Nash predictions.
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by conventional fixed-point models,3 they illustrate how evolutionary models can provide

additional substantive information not found in conventional models. This contribution

is important for two distinct reasons. First, the all-pay auction is applicable to a rich

set of concrete field environments such as political lobbying (Baye et al., 1993), patent

races (Marinucci and Vergote, 2011), biological competition (Chatterjee et al., 2012), and

international warfare (Hodler and Yektaş, 2012). For practitioners who encounter such

settings in the field, evolutionary models can identify which strategic environments are likely

to exhibit long-run behavior that approaches equilibrium predictions. Second, while other

studies observe cycles and instability in games with a relatively small number of actions

(i.e., 2 or 3), the continuous-action space of the all-pay auction allows us to provide evidence

for the applicability of evolutionary models to a much wider class of environments (see

section 2 for more detail). This includes a variety of concrete settings where evolutionary

models are employed such as finance (Hens and Schenk-Hoppé, 2005), bargaining (Abreu

and Sethi, 2003), and industrial organization (Alós-Ferrer et al., 2000). When evolutionary

models predict convergence, our results suggest that equilibrium models can often provide

a useful characterization of long-run aggregate behavior. Conversely, when evolutionary

models predict non-convergence, our results suggest that equilibrium models often fail to

characterize long-run aggregate behavior. Even when equilibrium models are unreliable, our

results suggest that evolutionary models can provide practitioners in the field with a useful

characterization of behavioral dynamics.4

The remainder of this paper proceeds as follows: Section 2 discusses the related literature.

Section 3 presents the theoretical predictions. Section 4 describes the experimental design

3Fixed-point models, including both Nash equilibrium and quantal response equilibrium (McKelvey
and Palfrey, 1995), identify invariant points of an operator on the strategy space. Nash equilibria are
fixed points of the best response and quantal response equilibria are fixed points of the quantal response.
Consequently, fixed-point models never predict instability in the distribution of strategies. Equilibrium
selection models can address relative stability across multiple equilibria, but are less useful in settings with a
unique equilibrium. In contrast, evolutionary models describe a dynamic adjustment process that can explain
persistently non-convergent cyclical patterns in the distribution of strategies across a population.

4For example, consider the design of a contest structure to allocate grant funding. Several distinct contest
structures may yield identical equilibrium predictions. Evolutionary models can help policymakers identify
which of these structures is most likely to induce convergence on the desired equilibrium. Conversely, a
policymaker who fails to consider evolutionary models may select a contest structure that has desirable
equilibrium properties but induces undesirable non-convergent behavior. We elaborate on this idea in our
concluding section.
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and procedures. Section 5 presents the experimental hypotheses. Section 6 provides the main

results. Section 7 discusses our main findings and provides context.

2 Related Literature

This paper reports the first experimental investigation of the all-pay auction under continuous-

time protocols. As such, it connects two strands of literature: experimental investigations

of the all-pay auction and experimental studies of continuous-time dynamics.5 Previous

experimental studies of the all-pay auction (e.g., Gneezy and Smorodinsky, 2006; Lugovskyy

et al., 2010; Ernst and Thöni, 2013) conduct a sequence of discrete periods in which subjects

secretly select their bids and the single highest bidder receives a price. With the notable

exception of Potters et al. (1998), these experiments are generally characterized by persistent

overbidding relative to the Nash equilibrium. We are the first to conduct such experiments

in continuous time and do not observe a similar result.

The paper also contributes to the experimental literature on continuous-time evolutionary

dynamics (i.e., Benndorf et al., 2016; Bigoni et al., 2015; Cason et al., 2014, 2020; Oprea

et al., 2011; Stephenson, 2019). Consistent with Cason et al. (2014) and Stephenson (2019),

we find persistent cyclical behavior when adaptive models are unstable. Unlike previous

studies, this paper identifies cyclical behavior in games with a continuum of pure strategies,

instead of simple bimatrix games with two or three strategies. This distinction necessitates an

important procedural difference. Cason et al. (2014) and Stephenson (2019) allow subjects to

directly select mixed strategies. Because visualizing the 1000 dimensional space of probability

distributions over these actions is infeasible,6 our experiment allowed subjects to directly

select bids. As in evolutionary models, mixed strategies occur in our experiment only as

distributions of pure strategies over a population of subjects. Evolutionary predictions largely

hold in our experiment, providing a precedent for further testing of evolutionary models in

games with mixed-strategy equilibria over large numbers of actions.

Finally, this paper makes extensive use of the theoretical literature. Both Nash equilibrium

5See Dechenaux et al. (2014) and Brown and Stephenson (2019) for a survey on each topic, respectively.
6The all-pay auction has a continuous strategy space which we discretize into 1001 actions (see section 4).
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and logit quantal response equilibrium (Anderson et al., 1998; Baye et al., 1996; McKelvey

and Palfrey, 1995) provide a basis for experimental tests of fixed-point models. We also

test the stability criteria provided by Hopkins and Seymour (2002) and Taylor and Jonker

(1978) and the logit dynamics described by Fudenberg and Levine (1998). Our experimental

design provides a clean separation between the predictions of equilibrium models and those of

evolutionary dynamics in the all-pay auction, strongly rejecting the hypothesis of aggregate

behavioral stability in the all-pay auction with two prizes.

3 Theory

Consider an all-pay auction where n bidders compete over n−1 indivisible prizes. Each bidder

i simultaneously selects a bid si ∈ [0, w]. All but the lowest bidder receives an identically

valuable prize with publicly known value v ≤ w. If multiple bidders are tied for the lowest bid,

then the tie is broken at random. Let L(s) denote the lowest bid in the pure strategy profile

s ∈ Rn, let E(s) denote the number of bids equal to L(s), and let H(s) = (E(s)− 1)/E(s).

Accordingly, the expected payoff to bidder i is given by:

π (si|s−i) =

v − si if si > L(s)

vH(s)− si if si ≤ L(s)

. (1)

The probability of receiving a prize by bidding b ∈ [0, w] against opponents who employ the

continuous mixed strategy F is given by

P (b|F ) =
n−1∑
m=1

(
n− 1

m

)
F (b)m(1− F (b))n−m−1 (2)

The expected payoff to a bidder who bids b ∈ [0, w] against opponents who employ the mixed

strategy F is given by

π(b|F ) = vP (b|F )− b. (3)
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The expected payoff to a bidder who employs the mixed strategy G against opponents who

employ the mixed strategy F is given by

π(G|F ) =

ˆ w

0

π(b|F ) dG(b) = v

ˆ w

0

P (b|F ) dG(b)−
ˆ w

0

b dG(b). (4)

In this paper, we focus on two special cases that exhibit very different stability properties.

We refer to the all-pay auction with two bidders competing over one prize as “auction 1” and

the all-pay auction with three bidders competing over two prizes as “auction 2.” In auction

1, the probability obtaining a prize by bidding b ∈ [0, w] against opponents who employ the

mixed strategy F is given by

P (b|F ) = F (b) (5)

In auction 2, the probability of obtaining a prize by bidding b ∈ [0, w] against opponents who

employ the mixed strategy F is given by

P (b|F ) = 2F (b)− F (b)2 (6)

3.1 Fixed-Point Models

Fixed-point models characterize behavior by invariant points of operators on the strategy

space. Nash equilibria are fixed points of the best response. Logit quantal response equilibria

are fixed points of the logit quantal response. In general, such fixed-points may be pure

strategy profiles or non-trivial mixed strategy profiles, but they must be a single strategy

profile.

3.1.1 Nash Equilibrium

Neither auction 1 nor auction 2 has a pure strategy Nash equilibrium; they each have a

unique Nash equilibrium in symmetric mixed strategies (Barut and Kovenock, 1998). The

equilibrium bidding distribution for auction 1 was derived by Baye et al. (1996), and is given

by

Φ(bi) =
bi
v

for bi ∈ [0, v]. (7)
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Figure 1: The Nash equilibrium bid distributions. The solid green line illustrates the equilibrium
bid distribution for auction 1 and the dashed blue line illustrates the equilibrium bid distribution
for auction 2.
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Figure 2: The Nash equilibrium expected payoff functions. The solid green line illustrates the
equilibrium expected payoff function for auction 1 and the dashed blue line illustrates the equilibrium
expected payoff function for auction 2.
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The equilibrium bidding distribution for auction 2 was derived by Barut and Kovenock (1998)

Φ(bi) = 1−
√

1− bi
v

for bi ∈ [0, v]. (8)

Figures 1 and 2 illustrate the Nash equilibrium bid distributions and expected payoff

functions respectively. The horizontal axis illustrates potential bids b ∈ [0, w] and the vertical

axes illustrates the equilibrium cumulative probability and the equilibrium expected payoff

respectively. Equilibrium expected payoffs are zero7 in both auctions, but the Nash equilibrium

bid distribution of auction 2 first-order stochastically dominates8 the Nash equilibrium bid

distribution of auction 1, implying that bidders will bid more aggressively in auction 2

3.1.2 Logit Quantal Response Equilibrium

Unlike the perfectly rational agents described by Nash equilibrium, the agents described by

logit quantal response equilibrium do not always select a best response, but they are more

likely to select strategies that yield higher payoffs. When the distribution of bids is given by

the cumulative distribution function F then the likelihood that an adjusting agent will select

the bid b ∈ [0, w] is given by the logit response

` (b|F ) =
expλπ (b|F )ˆ w

0

expλπ (x|F ) dx

(9)

A logit quantal response equilibrium is a fixed-point L∗ of the logit response such that

L∗(b) = L(b|L∗) =

ˆ b

0

` (x|L∗) dx (10)

The parameter λ ≥ 0 denotes the agent’s sensitivity to payoff differences. When λ is large,

agents have high precision and are sensitive to small differences in payoffs, so they are very

likely to select strategies that yield high payoffs. As λ approaches infinity, agents become

increasingly precise and the logit response approaches the best response. When λ is small,

7Since the expected payoff from bidding zero is zero, the expected payoff from other bids in the support of
the Nash equilibrium must also be zero.

8Since
√
x > x for all x ∈ (0, 1), we have bi

v > 1−
√

1− bi
v for all bi ∈ (0, v).
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agents have low precision and are insensitive to small differences in payoffs, so they exhibit

more randomness in their bidding behavior. When λ = 0, agents are completely insensitive

to payoff differences and the logit response is uniformly distributed over the strategy space

[0, w].

The stationary points of the logit response are the logit quantal response equilibria

(McKelvey and Palfrey, 1995). As the precision parameter λ approaches infinity, the logit

quantal response equilibrium approaches a Nash equilibrium. A closed form solution for the

logit quantal response equilibrium of auction 1 is provided by Anderson et al. (1998) and is

given by

L∗ (b) = − 1

λv
log

(
1− 1− exp(−λb)

1− exp(−λw)
(1− exp(−λv))

)
(11)

To the best of our knowledge, no closed form solution is currently available for the logit

quantal response equilibrium of an all-pay auction with two prizes. Accordingly, we provide

the logit quantal response equilibrium for auction 2 in proposition 1.

Proposition 1. The logit quantal response equilibrium bid distribution for auction 2 is

L∗ (b) = 1− 1√
λv

erfi−1

([
1− 1− exp (−λb)

1− exp (−λw)

]
erfi
(√

λv
))

(12)

Proof. See appendix on page 34.

Figure 3 illustrates the logit quantal response equilibrium mean bid under a variety of

precision parameters. If agents are completely insensitive to payoff differences then bids are

selected uniformly at random and the mean bid in both auctions is equal to w/2. As the

precision parameter approaches infinity the logit quantal response equilibrium mean bid of

each auction approaches the Nash equilibrium mean bid of each auction, v/2 in auction 1

and 2v/3 in auction 2. The logit quantal response equilibrium mean bid is larger in auction

2 than in auction 1 for every positive value of the precision parameter. Similarly, figure 4

illustrates the logit quantal response equilibrium mean payoff under a variety of precision

parameters. The logit quantal response equilibrium mean payoff is larger in auction 2 than

in auction 1 for every finite value of the precision parameter.
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3.2 Evolutionary Models

Evolutionary models include both evolutionary stability criteria and evolutionary dynamics.

Evolutionary stability criteria characterize the robustness of equilibria to small perturbations.

Dynamic evolutionary models describe an adaptive process of behavioral adjustment in large

populations of boundedly rational agents. When the stationary-points of these evolutionary

dynamics correspond to equilibria, they often exhibit stability properties that correspond to

the characterizations provided by evolutionary stability criteria.

3.2.1 Evolutionary Stability Criteria

To evaluate the stability of these Nash equilibria, we consider the definiteness conditions

described by Hopkins and Seymour (2002). In a symmetric game with expected payoff

function π(b|F ), an equilibrium mixed strategy distribution Φ with density function φ is said

to be positive definite if the quadratic form

Q (Z) =

ˆ
DFπ(b|Φ)Z(b) dZ(b) (13)

is strictly positive for all Z(b) = G(b)− Φ(b) where G 6= Φ is an arbitrary non-equilibrium

distribution with density function g. Here DFπ(b|Φ) denotes the linearization of the payoff

function π(b|F ) at F = Φ. Conversely, Φ is said to be negative definite if the quadratic

form Q(Z) is strictly negative. An equilibrium strategy that is neither positive definite nor

negative definite is said to be indefinite. In all-pay auctions, this quadratic form can be

written as

Q (Z) =

ˆ w

0

∂π (b|F )

∂F (b)

∣∣∣∣
F=Φ

Z (b) dZ (b) (14)

Intuitively, an equilibrium strategy is negative definite if any sufficiently small deviation

from equilibrium creates incentives that push behavior back towards equilibrium. Conversely,

an equilibrium strategy is positive definite if any sufficiently small deviation from equilibrium

creates incentives that push behavior farther away from equilibrium. To see why, suppose that

bidders exhibit a small deviation from the equilibrium bid distribution Φ to a non-equilibrium

bid distribution G. If G is sufficiently close to Φ then the expected payoff to a bid b ∈ [0, w]
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against G is linearly approximated by

π̃ (b|G) =
∂π (b|F )

∂F (b)

∣∣∣∣
F=Φ

Z (b) (15)

and the quadratic form Q(Z) can be written as

ˆ w

0

π̃ (b|G) dZ(b) =

ˆ w

0

π̃ (b|G) dG(b)−
ˆ w

0

π̃ (b|G) dΦ(b) = π̃(G|G)− π̃(Φ|G). (16)

Thus Q(Z) provides a linear approximation for the difference between the expected payoff

to the non-equilibrium strategy G against itself and the expected payoff to the equilibrium

bidding strategy Φ against G. If Q(Z) is strictly positive then the approximate payoff to the

alternate bidding strategy G is strictly greater than the approximate payoff to the equilibrium

bidding strategy. Conversely, if Q(Z) is strictly negative then the approximate payoff to the

alternate bidding strategy G is strictly less than the approximate payoff to the equilibrium

bidding strategy. If the alternate strategy G is sufficiently close to the equilibrium strategy Φ

then this local approximation accurately ranks the expected payoffs to each strategy.

Proposition 2. The Nash equilibrium for auction 2 is positive definite.

Proof. See appendix on page 32.

Proposition 2 indicates that the unique Nash equilibrium of auction 2 is positive definite

and in therefore unstable under a wide variety of adaptive models. Hopkins and Seymour

(2002) show that every positive definite mixed strategy Nash equilibrium is an unstable point

under all positive definite adaptive dynamics. Conversely, they show that every negative

definite mixed strategy Nash equilibrium is a locally stable stationary point under all positive

definite adaptive dynamics. Further, Hopkins (1999) shows that these stability results for

positive definite adaptive dynamics extend to the both the best response dynamic and to any

sufficiently precise perturbed best response dynamic.

Proposition 3. The Nash equilibrium for auction 1 is indefinite.

Proof. See appendix on page 32.
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Proposition 3 indicates that the Nash equilibrium for auction 1 is neither positive definite

nor negative definite. It should be noted that positive and negative definiteness are local

stability conditions that only describe the incentives created by small deviations from

equilibrium. In contrast, a Nash equilibrium mixed strategy distribution Φ is said to be

globally neutrally stable (Sandholm, 2010) if

π(Φ|G) ≥ π(G|G) (17)

for any non-equilibrium mixed strategy distribution G 6= Φ. Global neutral stability implies

that the Nash equilibrium strategy does weakly better against any alternative strategy

than this alternative strategy does against itself. So if a player’s opponents were to employ

the non-equilibrium mixed strategy G then she would be weakly better off employing the

equilibrium strategy Φ than the non-equilibrium strategy G.

Proposition 4. The Nash equilibrium for auction 1 is globally neutrally stable.

Proof. See appendix on page 33.

Proposition 4 indicates that the Nash equilibrium strategy of auction 1 does at least as

well against any non-equilibrium strategy then that non-equilibrium strategy does against

itself. In contrast, proposition 2 indicates that the Nash equilibrium strategy of auction 2

does worse against any sufficiently close alternative strategy then that alternative strategy

does against itself. Together, these theorems suggest that the unique Nash equilibrium of

auction 1 is fundamentally more stable than the unique Nash equilibrium of auction 2.

3.2.2 Evolutionary Dynamics

The logit dynamic describes the evolution of a mixed strategy distribution over time in a large

population of agents. Agents in this population make asynchronous strategy adjustments

where the timing of each agent’s adjustments follows a homogeneous Poisson process. Unlike

the perfectly rational agents described by Nash equilibrium, these agents do not always select

a best responses but they are more likely to select strategies that yield higher payoffs. When

the distribution of bids is given by the cumulative distribution function F then the likelihood
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values for this limit cycle are set to mirror the experimental setup for auction 2 and are given by
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that an adjusting agent will select the bid b ∈ [0, w] is given by the logit response

` (b|F ) =
expλπ (b|F )ˆ w

0

expλπ (x|F ) dx

(18)

Hence the evolution of the bid distribution over time is governed by the differential equation

Ḟ (b) = L (b|F )− F (b) where L(b|F ) =

ˆ b

0

`(b|F ) (19)

Hopkins (1999) shows that if a unique mixed strategy Nash equilibrium is positive definite

then the logit quantal response equilibrium is an unstable repeller of the logit dynamic under

sufficiently high precision levels. Proposition 2 states that the unique mixed strategy Nash

equilibrium of auction 2 is positive definite while proposition 4 states that the unique mixed

strategy Nash equilibrium of auction 1 is globally neutrally stable. Hence sufficiently precise

logit dynamics diverge to a persistent limit cycle in auction 2 but converge to the logit quantal

response equilibrium in auction 1. Figure 5 depicts the projection of this limit cycle onto the
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Figure 6: Long-run bid variation under the logit dynamic.

two dimensional space with optimal bids on the horizontal axis and optimal payoffs on the

vertical axis.

Figure 6 depicts the long-run variation in the distribution of bids under a variety of

precision parameters. Here variation is defined as the time average of the Chebyshev distance

between the distribution of bids Ft in the population at time t and the long-run average bid

distribution F̄ (b) = lim
T→∞

1
T

´ T
0
Ft(b)dt. Formally, the long-run variation can be written as

Var(F ) = lim
T→∞

1

T

ˆ T

0

∥∥F̄ − Ft∥∥ dt, (20)

where ‖G‖ = sup{G(b) : b ∈ [0, w]} denotes the uniform norm of the function G. Hence the

long-run variation is equal to zero if the distribution of bids converges to a stationary point

and the long-run variation is greater than zero if the distribution of bids converges to a limit

cycle.
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4 Experimental Design

The experiment utilized a between-subject design. Each session implemented one of the two

all-pay auctions described in section 3. In treatment 1, two bidders compete over one-prize.

In treatment 2, three bidders compete over two prizes. In both treatments, subjects were

endowed with w = $10 and competed for prizes with known value v = $7. Each session had

four 5 minute periods, during which subjects could adjust their bids as frequently as desired.

When a subject clicked, her bid instantaneously changed to the level corresponding to the

horizontal position of her mouse.9 Subjects could use this interface to instantly select any

bid in dollars and cents from $0 to $10.

To implement evolutionary ‘playing the field’ (Smith, 1982; Sandholm, 2010), we employ

mean matching (e.g. Cason et al., 2014; Oprea et al., 2011) where each subject’s instantaneous

payoff is given by the expected value of her payoff from being randomly matched against

the other subjects in her session. By the law of large numbers, mean-matching provides a

superior approximation to truly continuous random matching than high frequency random

matching. Consistent with the theoretical framework described in section 3, each subject

effectively competes against the entire population of possible opponents. Subjects received

continuous feedback regarding their mean-matching payoffs throughout each period. Bids

and payoffs were recorded at a rate of ten times per second.10 At the end of each session,

subjects received the time average of their mean-matching payoff in addition to a fifteen

dollar show-up payment.

The experiment also had two informational treatments, also implemented between subject.

Under the social-information treatment, each subject received real-time information regarding

the bids and payoffs of every participant in her cohort. Under the payoff-information

treatment, subjects could directly observe the current payoff to every possible bid. This

paper focuses on the the auction treatment, while the informational treatments are addressed

9This instantaneous change is known as a “jump-adjustment:” the alternative “continuous-adjustment”
has strategies gradually change upon subject input. Cason et al. (2014) employs each method in a separate
treatment. Stephenson (2019) employs the latter method.

10Because payoffs are calculated ten times per second, one could interpret this as a finitely repeated game.
This approximation of continuous time is common in the literature (see Cason et al., 2014; Oprea et al.,
2011; Stephenson, 2019). Further, it is unlikely subjects had the cognitive ability or physical reflexes to make
adjustments ten times per second, making the game effectively continuous from the subjects’ standpoint.
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Figure 7: (a, top left) User interface under auction 1 with social information. (b, top right) user
Interface under auction 1 with payoff information. (c, bottom left) User interface under auction 2
with social information. (d, bottom right) User interface under auction 2 with payoff information.
The thick blue line denotes a subject’s current bid and payoff. Under social information, the red
lines represent the bids and payoffs of the other subjects. Under payoff information, the green line
denotes the instantaneous payoffs associated with any bid.
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hypothesis 1:
greater bids
in auction 2

than 1

hypothesis 2:
greater earnings

in auction 2
than 1

hypothesis 3:
greater instability

in auction 2
than 1

hypothesis 4:
clockwise cycles

in auction 2

Nash equilibrium yes no n/a n/a
Logit QRE yes yes n/a n/a
Stability Criteria n/a n/a yes n/a
Logit Dynamic yes if λ < 7a yes yes

a In unstable settings, the logit dynamics orbit the logit QRE in distribution space. This orbit is generally
asymmetrical, so the time-average does not generally coincide with the logit QRE. If λ < 7, the logit
dynamics predict higher earnings in auction 2 than auction 1. As shown in table A.2, maximum
likelihood estimation finds λ < 7 for every subject under logit dynamics.

Table 1: Theoretical predictions of Nash equilibrium, logit quantal response equilibrium, stability
criteria and logit dynamics. Nash and quantal response equilibrium models are designed to predict
the fixed-point where strategic play converges and offer no predictions on the likelihood of convergence
or the dynamics about a fixed point. Stability criteria predict the likelihood of convergence but
make no prediction regarding comparative statics or disequilibrium dynamics.

in a separate paper (Stephenson and Brown, 2020).11

Figure 7 illustrates the experimental interface under the social-information and payoff-

information treatments, respectively. The subject’s current bid and payoff is represented by a

blue line. The horizontal position of the blue line indicates the subject’s current bid and the

height of the blue line indicates the subject’s current payoff. The subject’s current bid and

payoff are also displayed numerically at the bottom of the screen. In the social information

treatment, bids and payoffs of others are represented by red lines. In the payoff information

treatment, the subject’s instantaneous payoff function is represented by a green line.

Eight experimental sessions were conducted, four for each auction treatment condition.

Each session was run with twenty subjects. All 160 subjects were recruited from the Texas

A&M undergraduate population using an ORSEE database (Greiner, 2015). At the end of

every session, each subject received the time average of their instantaneous payoff plus a

five dollar show-up payment. Subject in auction 1 earned an average of $15.47. Subjects in

auction 2 earned an average of $15.88. In equilibrium, average subject earnings were equal

to $15.00, so subjects received slightly above equilibrium earnings under both treatments.

Every session lasted less than an hour, including instructions and payment procedures.

11None of the five outcome variables (see Table 2) differ substantially between information treatments,
holding the auction constant (see Appendix Table A.1). Regression analysis (not provided) confirms the main
results of this paper even in specifications that use information treatment as an explanatory variable.
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5 Hypotheses

Section 3 provided the theoretical predictions of fixed-point models (i.e., Nash equilibrium,

logit quantal response equilibrium), stability criteria, and evolutionary dynamics. While

all of these models are applicable to the environment, they each motivate different types of

hypotheses. Fixed-point models identify particular strategies which are often interpreted

as describing where play will eventually converge. Such models are not designed to provide

predictions regarding the likelihood of this convergence. In contrast, stability criteria focus

on this latter issue with less focus on other details about the strategy profile. Dynamic

evolutionary models explicitly describe a process where strategies change over time which

may or may not lead to convergence in the long run. Table 1 provides a summary of the four

theoretical models and their relation to the four hypotheses discussed in this section.

Both the Nash equilibrium and logit quantal response equilibrium predict a higher mean

bid for auction 2 than auction 1. As illustrated by figure 1, the equilibrium bid distribution

of auction 2 first-order stochastically dominates the equilibrium bid distribution of auction 1.

Hence Nash equilibrium predicts that bidders will bid more aggressively in auction 2. As

illustrated by figure 3, the mean bid for the logit quantal response equilibrium of auction 2 is

higher than the mean bid for the logit quantal response equilibrium of auction 1 under every

positive precision level.

Hypothesis 1. Average bids will be greater in auction 2 than auction 1.

Nash equilibrium predicts an expected payoff of zero under both auction 1 and auction

2. However, as illustrated in figure 4, logit quantal response equilibrium predicts that the

expected payoff to a bidder in auction 2 will be higher than the expected payoff to a bidder

in auction 1 under every finite precision level.

Hypothesis 2. Average payoffs will be greater in auction 2 than auction 1.

Proposition 4 indicates that the Nash equilibrium of auction 1 is globally neutrally stable.

It does at least as well against any alternative strategy than the alternative does against

itself. In contrast, proposition 2 indicates that the the Nash equilibrium strategy of auction 2

is positive definite. It does worse against any sufficiently close alternative strategy then the
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alternative does against itself. These theorems indicate that the Nash equilibrium of auction

2 is less stable than the Nash equilibrium of auction 1.

Hypothesis 3. The empirical distribution of bids in auction 2 will exhibit greater instability

than the empirical distribution of bids in auction 1.

Figure 5 illustrates the clockwise limit cycles predicted by the logit dynamic for auction

2 in the two-dimensional space with the optimal bids on the horizontal axis and optimal

payoffs on the vertical axis. Together with the local instability result from proposition 2, the

presence of these limit cycles results in the following hypothesis.

Hypothesis 4. The empirical distribution of bids in auction 2 will exhibit clockwise cycles.

6 Results

Table 2 provides summary statistics for all bid adjustments made by subjects over all

sessions of the experiment. In total, subjects made 237,800 separate bid adjustments. Each

individual subject made an average of 1486.25 bid adjustments over four, five-minute periods,

roughly one bid adjustment every 0.8 seconds.12 Bid adjustments were substantive, as each

adjustment changed a bid by an average of $0.89, roughly 9% of the strategy space. Subjects

generally improved their payoff with each adjustment, as an adjustment increased a subject’s

instantaneous payoff by an average of $0.41.

We now turn to testing the theoretical predictions of fixed-point models. Both Nash

equilibrium and logit quantal response equilibrium predict a higher mean bid for auction 2

than auction 1.

Result 1. Bids and payoffs were both higher in auction 2 than in auction 1. In both auctions,

bids were lower than Nash predictions while payoffs were higher than Nash predictions.

12Subjects in our experiment could instantaneously adjust their action. In Stephenson (2019) and some
treatments of Cason et al. (2014), subjects made continuous adjustments to their action over time, so they
lack comparable jumps that can be counted (see footnote 9). Of the studies with jump adjustments, Cason
et al. (2014) and Oprea et al. (2011) do not mention the frequency of adjustments they observed. Stephenson
(2020) observed an adjustment every 6.67 seconds in a 24-action, dominant strategy, school choice game.
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Overall Auction 1 Auction 2

Average Bid 3.68 (1.79) 3.24 (1.79) 3.96 (1.76)
Dominated Bid (above 7) 0.02 (0.15) 0.01 (0.09) 0.03 (0.17)
Absolute Change in Bid 0.89 (1.08) 0.93 (1.07) 0.87 (1.09)
Payoff Change from Adjustment 0.41 (0.88) 0.30 (0.68) 0.48 (0.98)

Total Adjustments 237800 91105 146695
Total Minutes 160 80 80
Total Periods 32 16 16
Total Sessions 8 4 4
Total Subjects 160 80 80

Table 2: Summary statistics for bid adjustments. Standard deviations are provided in parentheses.

Nash Equilibrium Empirical Behavior
Auction 1
(1 prize,

2 bidders)

Auction 2
(2 prizes,
3 bidders)

Auction 1
(1 prize,

2 bidders)

Auction 2
(2 prizes,
3 bidders)

Mean Bid Amount 3.500 4.667
3.038

(0.067)
3.800

(0.098)

Mean Payoffs 0 0
0.471

(0.066)
0.879

(0.098)

Deviation from Time-
Averaged Mean

0 0
0.193

(0.007)
0.283

(0.009)

Deviation from Nash
Equilibrium

0 0
0.232

(0.008)
0.389

(0.016)

Cycle-Rotation Index 0 0
0.321

(0.036)
0.480

(0.028)

Table 3: Nash predictions and corresponding period-level empirical outcomes by auction. Standard
errors are provided in parentheses.
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Table 3 summarizes five key empirical values at the period level alongside Nash equilibrium

predictions for comparison. As predicted by fixed-point models, the average bid in auction 1

(3.038) was lower than the average bid in auction 2 (3.800). A permutation test, run at the

session level (N=8), finds these differences to be significant at the 5% level (p-value ≈ 0.0286,

two-tailed).13 All sessions feature average bids lower than the corresponding Nash prediction.

Figures 8 (a) and (b) show histograms of subject mean bids in auctions 1 and 2, respectively.

The distribution of mean subject bids loosely resemble a normal curve centered around a

point slightly below the Nash prediction. Bids are typically higher in auction 2, consistent

with our previous results. Most subjects bid below the mean Nash prediction on average.

Only 28 and 8 subjects in auctions 1 and 2, respectively, have mean bid amounts higher than

Nash levels. Figures 8 (c) and (d) show histograms for the overall distribution of subject mean

bids in auctions 1 and 2, respectively. The overall distribution of bids exhibits bimodality in

auction 2. However, in contrast to Ernst and Thöni (2013), the overall distribution of mean

bids is roughly unimodal in auction 1.

Since earnings are given by winnings less bids, mean earnings are inversely related related

to mean bids. Nash Equilibrium predicts mean earnings of 0 in both auction 1 and auction 2.

In contrast, mean earnings exceeded 0 in all 8 auction sessions. Consistent with Hypothesis

2, average earnings were higher auction 2 (0.879) than in auction 1 (0.471) (p-value ≈ 0.0857,

two-tailed). However, the predictions are not fully consistent with the logit quantal response

equilibrium, which predicts positive earnings in auction 2 but negative earnings in auction 1.

Evolutionary models predict that auction 2 will exhibit greater instability than auction 1.

To measure variation in the empirical bid distribution over time, we first compute Ft, the

empirical distribution of bids at at time time t. Next, we compute F̄ , the time-averaged

distribution of bids over the entire period. The time-average of the Chebyshev distance

between Ft and F̄ serves as our measure of instability in the empirical bid distribution. We

also compute F ∗A, the Nash equilibrium prediction for auction A and compute the time-average

13Unless otherwise noted, we provide comparisons of session level averages in our analysis. Using period-
level averages instead would not qualitatively affect our results. If anything, using period-level treatment
comparisons, whether parametric or non-parametric, would make the differences between treatments significant
at lower thresholds.
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Figure 8: Histograms of observed bids. The first row illustrates the distribution of mean subject
bids for auction 1 (a, left) and auction 2 (b, right). Mean subject bids were calculated for each
subject over an entire 20 minute experimental session comprising 4 periods. The second row
illustrates the overall distribution of bids for auction 1 (c, left) and auction 2 (d, right). The vertical
red lines denote the mean Nash bid for each auction.
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of the Chebyshev distance between Ft and F ∗A as a measure of deviation from equilibrium.

Deviation(F̄ , Ft) =
1

T

T∑
t=0

∥∥Ft − F̄∥∥ , where

F̄ (b) =
1

T

T∑
t=0

Ft(b)

‖G‖ = sup {|G(x)| : x ∈ [0, w]}

Table 3 provides the means and standard errors for this measure of instability over

all 32 periods in the experiment, separated by treatment. Consistent with evolutionary

stability criteria, sessions that implemented auction 2 exhibited greater instability (0.283)

than sessions that implemented auction 1 (0.193) (p-value ≈ 0.0286, two-tailed). These results

are consistent with the positive definiteness of auction 2 and the global neutral stability of

auction 1. Both auctions exhibited substancial deviation from Nash equilibrium. This finding

is consistent with Result 1 which showed that bids and payoffs were both different from

their Nash equilibrium values. Deviation from equilibrium was greater in auction 2 (p-value

≈ 0.0286, two-tailed), which is consistent with the greater instability of auction 2.

Result 2. The empirical bid distribution exhibited both greater instability and greater deviation

from Nash equilibrium in auction 2 than in auction 1.

Logit response dynamics predict clockwise cycling in both auctions. In contrast, neither

Nash equilibrium nor quantal response equilibrium is equipped to address the presence of

cyclical behavior. In auction 1, these cycles are predicted to converge on a logit quantal

response equilibrium. In auction 2, these cycles are predicted to converge on a stable limit

cycle orbiting the logit quantal response equilibrium. To measure these cycles, we project the

infinite dimensional distribution space onto a more manageable two-dimensional space with

optimal bids on the horizontal axis and optimal payoffs on the vertical axis. We can easily

observe a great deal of persistent clockwise cycling in this two-dimensional space. Figure 9(a)

provides one example of such a cycle that occurred during period 2 of session 4.

Result 3. Both auction 1 and 2 exhibit clockwise cycling. Cycling is more pronounced in

auction 2.
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Figure 9: (a, left) An example cycle on the two-dimensional graph of optimal bid and maximal
payoff. Observed from seconds 16 to 21 of period 2, session 4. (b, right) Mean cycle-rotation index
by auction and period.

To formally measure the strength of this clockwise cyclical behavior we take a Poincare

section from the long-run average point in this space. This Poincare section is illustrated by

the vertical line segment in figure 9(a). Next we calculate the number of clockwise rotations

and the number of counterclockwise rotations. A rotation is said to occur when the bid

distribution crosses the Poincare section in the two-dimensional space. We then calculate the

cycle rotation index described by (Cason et al., 2014)

CRI =
Clockwise Traversals− Counterclockwise Traversals

Clockwise Traversals + Counterclockwise Traversals

If subjects exhibit exclusively clockwise rotations then cycle rotation index will equal 1.

Conversely, if subjects exhibit exclusively counterclockwise rotations then cycle rotation index

will equal -1. If subjects exhibit an equal number of clockwise and counterclockwise rotations

the the cycle rotation index will equal 0. If bids exhibit a stable distribution over time then

the cycle rotation index will tend towards zero. If the cycle rotation index is significantly

different from zero, then we infer the distribution of bids exhibits significant cyclical patterns.

Logit dynamics predict clockwise cycling in both auction 1 and auction 2. In auction 1,
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these cycles converge on the logit QRE. However, in auction 2, these cycles exhibit persistent

non-convergence. Accordingly, logit dynamics predict that long-run behavior will coincide

with logit QRE in auction 1, but not in auction 2. Consistent with these predictions, maximum

likelihood estimation14 finds that 85% of subjects in treatment 2 are better explained by the

logit dynamic than by the logit QRE, while only 52% of subjects in auction 1 are better

explained by the logit dynamic than by the logit QRE.

Table 3 provides the mean and standard deviation of the Cycle-Rotation Index for auction

1 and auction 2 at the period level. All eight sessions feature average CRI’s above 0, indicating

pronounced clockwise cycling in both treatments. All eight values are also below 1, the

theoretical prediction of perfect clockwise cycling, indicating the presence of behavioral noise.

The cycle rotation index is higher in auction 2, consistent with the theoretically predicted

convergence of auction 1 (p-value ≈ 0.0857, two-tailed). Figure 9(b) provides CRI averages

by period in all eight sessions. The CRI measure is above 0 in all periods, indicating strong

clockwise cycling. The CRI decreases in later periods of auction 1, consistent with the

predicted long run convergence in auction 1. The CRI remains relatively constant in auction

2, consistent with the predicted persistence of limit cycles in auction 2.

7 Discussion

This paper connects two strands of literature: experimental investigations of the all-pay

auction and experimental studies of evolutionary dynamics in continuous time. In both

areas this work departs from convention. It is the first examination of the all-pay auction

in continuous time. It also marks the first continuous-time experimental examination of

mixed strategy equilibria over a continuous strategy space, rather than two or three pure

strategies. In contrast to previous discrete-time investigations of the all-pay auction, we

observe persistent underbidding relative to the Nash predictions. Consistent with evolutionary

models, we observe persistent cyclical behavior in both treatments and greater stability in

our first treatment.

Most previous experimental studies of the all-pay auction find overbidding relative to

14See table A.2 for a detailed description of the maximum likelihood estimates.
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Nash equilibrium. All of these were conducted in discrete time with random matching

or fixed groups. Mean-matching in continuous-time mirrors the structure of evolutionary

models and provides subjects with far more experience than conventional discrete time

protocols. Accordingly, our findings suggest that overbidding in all-pay auctions diminishes

with experience. Indeed, previous literature that examined a large number of discrete periods

noted a declining trend of overbidding with experience (Davis and Reilly, 1998; Lugovskyy

et al., 2010). While inexperience may indeed contribute to overbidding in all-pay auctions,

other explanations also have empirical support. Utility of winning and competitive preferences

might explain overbidding in a way that would persist with experience. The use of mean-

matching in continuous-time may increase the salience of payoffs while diminishing the salience

of winning. These experimental protocols may have suppressed competitive preferences that

subjects would have exhibited under conventional matching in discrete-time. Agents in the

field who occasionally participate in an auction may experience utility of winning that subjects

in our experiment did not. Conversely, agents in the field who routinely participate in many

auctions may seek to maximize payoffs in a way that subjects in conventional discrete-time

experiments do not. It remains for the reader (or future experimenter) to determine which

experimental protocols are most useful for the questions they aim to investigate.

Previous experimental studies investigating mixed-strategy equilibria in continuous-time

have considered games with a small number of pure strategies. Stephenson (2019) and Cason

et al. (2014) study mixed-strategies over two or three actions, respectively. These experiments

allowed subjects to directly select probability distributions over actions. In contrast, the all pay

auction features a continuous strategy space which we discretize into 1001 actions. Graphically

illustrating the 1000 dimensional space of mixed strategies was infeasible, so our experimental

interface allowed subjects to directly select bids. As in evolutionary models, mixed strategies

occur as distributions of actions over many subjects rather than randomization over actions

by an individual subject. Our experiment involved only a finite number of subjects, so it

only approximates the large population limit described by evolutionary models. The slight
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underbidding we observe may result from these limitations.15

Comparing the observed behavior across treatments, we find that the distribution of bids

exhibited greater stability over time in auction 1 than in auction 2. We also observe persistent

cyclical dynamics in both auctions. These observations cannot be explained by fixed-point

models, but they are consistent with dynamic evolutionary models. These results suggest that

evolutionary models can inform practitioners in a wide variety of concrete settings outside

the laboratory about whether long-run aggregate behavior is likely to approach equilibrium

predictions.

Consider the designer of a contest structure to allocate grant funding. Depending on

their policy goals, the designer may prefer some outcomes over others. To evaluate potential

contest structures, the designer might employ models that identify which outcomes are

likely to occur under each contest structure. A designer who only considers conventional

fixed-point models may incorrectly assess the desirability of a given contest structure because

they lack important information provided by evolutionary models. Several distinct contest

structures may yield identical equilibrium predictions, but differ in evolutionary predictions.

A policymaker who fails to consider evolutionary models may select a contest structure

that has desirable equilibrium properties but induces undesirable non-convergent behavior.

Further, it is conceivable that policymakers who prefer more stable and predictable outcomes

might prefer contest structures that induce reliable convergence to a particular equilibrium.

It is straightforward to apply similar arguments to other concrete field settings (refer to the

introduction for many examples).

While additional research is still required to establish the generality of these results in

a wider class of strategic environments, initial work is promising. A variety of papers now

present evidence for the usefulness of adaptive models in predicting convergence to equilibrium

(i.e., Benndorf et al., 2016; Bigoni et al., 2015; Cason et al., 2014, 2020; Oprea et al., 2011;

Stephenson, 2019). We encourage more experimental, theoretical, and applied research in

this burgeoning area.

15If it had been feasible to clearly depict a payoff distribution over the 1000 dimensional space of mixed
strategies, then we might have asked subjects to directly select mixed strategies. Alternatively, if each session
involved thousands of subjects, then we might have obtained a closer approximation of the large population
limit. In such experiments, time-averaged bids might have been even closer to the Nash predictions.
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A Proofs

Proof of Proposition 2. The Nash equilibrium bid distribution for auction 2 is given by

Φ(b) = 1−
√

1− b/v for all b ∈ [0, v] and the expected payoff function is given by π(b|F ) =

2vF (b)− vF (b)2 − b so the linearization of the expected payoff function π(b|F ) at F = Φ is

given by

∂π (b|F )

∂F (b)

∣∣∣∣
F=Φ

= 2v(1− Φ(b)). (A.1)

Now let Z(b) = G(b)− Φ(b) where G 6= Φ is an arbitrary non-equilibrium distribution with

density function g. The quadratic form Q(Z) from equation (13) is given by

Q(Z) = 2v

ˆ w

0

√
1− b/v Z (b) dZ (b)

= 2v

ˆ w

0

√
1− b/v d

(
Z (b)2 /2

)
= 2v

[
1

2
Z (b)2

√
1− b/v

]w
0

− v
ˆ w

0

Z (b)2 d
(√

1− b/v
)

= −v
ˆ w

0

Z (b)2 d

db

[√
1− b/v

]
db (A.2)

Thus is the quadratic form Q(Z) strictly positive since
d

db

[√
1− b/v

]
< 0.

Proof of Proposition 3. The Nash equilibrium bid distribution for auction 1 is given by

Φ(b) = v/b for all b ∈ [0, v] and the expected payoff function is given by π(b|F ) = vF (b)− b

so

∂π (b|F )

∂F (b)

∣∣∣∣
F=Φ

= v (A.3)

Now let Z(b) = G(b)− Φ(b) where G 6= Φ is an arbitrary non-equilibrium distribution with

density function g. Then the quadratic form Q(Z) from equation (14) can be written as

Q(Z) = v

ˆ w

0

Z (b) dZ (b) =
1

2
vZ(w)2 (A.4)

Thus Q(Z) = 0 since we have Z(w) = Φ (w)−G (w) = 1− 1 = 0.
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Proof of Proposition 4. The Nash equilibrium strategy for auction 1 is given by Φ(b) = v/b

for all b ∈ [0, v] and the expected payoff function is given by π(b|F ) = vF (b)− b. Let F 6= Φ

some arbitrary arbitrary non-equilibrium distribution on [0, w]. In this case, we haveˆ
b dF (b) =

ˆ b=w

b=0

ˆ x=b

x=0

dx dF (b)

=

ˆ x=w

x=0

ˆ b=w

b=x

dF (b) dx

=

ˆ w

0

[1− F (x)] dx (A.5)

Now the expected payoff to the equilibrium strategy Φ against the non-equilibrium strategy

F is given by

π(Φ|F ) = v

ˆ
F (b) dΦ(b)−

ˆ
b dΦ(b)

=

ˆ v

0

F (b) db− v

2
(A.6)

Conversely, the expected payoff to the non-equilibrium strategy F against itself is given by

π(F |F ) = v

ˆ
F (b) dF (b)−

ˆ
b dF (b)

=
v

2
−
ˆ
b dF (b) since F (X) ∼ U [0, 1] for X ∼ F (x)

=
v

2
−
ˆ w

0

[1− F (b)] db since

ˆ
b dF (b) =

ˆ w

0

[1− F (b)] db

≤ v

2
−
ˆ v

0

[1− F (b)] db

=
v

2
− v +

ˆ v

0

F (b) db

=

ˆ v

0

F (b) db− v

2

= π(Φ|F ) (A.7)

Thus the equilibrium strategy Φ does weakly better against the non-equilibrium strategy F

then the non-equilibrium strategy F does against itself.
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Proof of Proposition 1. In auction 2, the expected payoff to a bid b ∈ [0, w] against the

continuous mixed strategy distribution F is given by π(b|F ) = 2vF (b)− vF (b)2 − b, so the

logit quantal response equilibrium bid distribution L must satisfy

dL

db
=

exp (λ (2vL(b)− vL(b)2 − b))´ w
0

exp (λ (2vL(y)− vL(y)2 − y)) dy

C dL = exp
(
λ
(
2vL− vL2 − b

))
db

C exp
(
λv
(
L2 − 2L

))
dL = exp (−λb) db

C exp(−λv)

ˆ
exp

(
λv (1− L)2) dL =

ˆ
exp (−λb) db

erfi
(√

λv (1− L)
)

= C1 − C2 exp (−λb)

L (b) = 1− 1√
λv

erfi−1 (C1 − C2 exp (−λb)) (A.8)

Where erfi denotes the imaginary error function and is given by erfi(x) = 2√
π

´ x
0

exp(x2)dx.

Since bids are restricted to the closed interval [0, w] we know that L(0) = 0 and L(w) = 1.

Solving these boundary conditions for the constants C1 and C2 obtains

C1 =
erfi
(√

λv
)

exp (−λw)− 1
+ erfi

(√
λv
)

C2 =
erfi
(√

λv
)

exp (−λw)− 1
(A.9)

Substituting the solutions for C1 and C2 into the logit quantal response equilibrium bid

distribution for auction 2 yields

L (b) = 1− 1√
λv

erfi−1

([
1− 1− exp (−λb)

1− exp (−λw)

]
erfi
(√

λv
))

(A.10)
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B Additional Tables

Table A.1: Session level averages for five main outcome variables. Standard errors, based on the
four periods that comprise each session, are provided in parentheses

Session

Auction
Treatment

(no. of
prizes)

info
type

Mean
Bid

Amount)

Mean
Payoffs

Deviation
from Time-
Averaged

Mean

Deviation
from
Nash

Equilibrium

Cycle-
Rotation
Index)

1 2 payoff
3.772

(0.162)
0.908

(0.164)
0.283

(0.022)
0.391

(0.044)
0.561

(0.043)

2 1 payoff
2.985

(0.113)
0.526

(0.113)
0.216

(0.010)
0.253

(0.012)
0.450

(0.079)

3 2 social
4.013

(0.259)
0.663

(0.259)
0.275

(0.011)
0.352

(0.028)
0.418

(0.033)

4 1 social
3.047

(0.057)
0.464

(0.058)
0.167

(0.013)
0.207

(0.005)
0.232

(0.054)

5 1 social
3.360

(0.087)
0.149

(0.086)
0.190

(0.008)
0.204

(0.005)
0.256

(0.057)

6 2 social
3.470

(0.167)
1.212

(0.166)
0.285

(0.021)
0.446

(0.019)
0.412

(0.055)

7 1 payoff
2.762

(0.063)
0.746

(0.062)
0.198

(0.011)
0.264

(0.003)
0.347

(0.062)

8 2 payoff
3.944

(0.115)
0.734

(0.114)
0.289

(0.022)
0.365

(0.008)
0.529

(0.061)

Table A.2: Maximum likelihood estimates. The precision parameter λ was estimated separately
for each subject and each model.

Log Likelihood Estimated λ

Session Treatment Subject Adjustments QRE Logit Dynamic QRE Logit Dynamic

1 2 1 343 -14534.6 -13796.3 1.963215 0.996535

1 2 2 241 -10981.8 -9627.35 90.50562 0.968458

1 2 3 1866 -83741.1 -74238.9 75.15213 1.175507

1 2 4 2651 -120984 -106401 63.94754 1.161345

1 2 5 1424 -62930 -53493 75.38627 1.51164

1 2 6 4610 -210352 -188595 68.06483 1.025568

1 2 7 1015 -43521.6 -41737.1 0.866019 0.908018

1 2 8 1047 -45224.2 -44030.3 0.783802 0.861141

1 2 9 91 -3980.22 -3971.58 0.83077 0.561326

1 2 10 865 -37706 -36886.7 0.867565 0.758112
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1 2 11 4206 -178294 -159793 0.919223 1.484914

1 2 12 3793 -166876 -158997 0.633957 0.87064

1 2 13 2289 -103642 -89013.7 89.49573 1.340342

1 2 14 977 -42418.5 -40802.1 0.784853 0.82635

1 2 15 1860 -82746.8 -68081.1 99.11586 1.565908

1 2 16 3819 -168709 -143541 76.0989 1.5124

1 2 17 693 -29749.9 -29541.5 1.057556 0.692377

1 2 18 1882 -82221.5 -81134.8 0.932834 0.668187

1 2 19 2207 -99366.1 -93760.6 65.48425 0.781501

1 2 20 1442 -63583.4 -57514.8 99.96539 1.218844

2 1 1 815 -34704.5 -36103.5 4.199217 0.644632

2 1 2 1166 -49639.2 -48568.4 2.901665 1.154651

2 1 3 835 -35534.4 -34033.1 91.45752 1.266575

2 1 4 1312 -56190.4 -54118.7 2.776578 1.226842

2 1 5 1021 -43449.8 -46229.3 38.19639 0.404926

2 1 6 643 -27483 -27252.3 11.28833 0.944863

2 1 7 257 -10936.9 -10960 75.51809 0.846774

2 1 8 2575 -110195 -112468 4.5569 0.7479

2 1 9 829 -35279 -37055.3 38.1966 0.543453

2 1 10 3246 -138162 -135621 12.27084 1.137972

2 1 11 686 -29193.5 -30130.7 76.3932 0.709913

2 1 12 686 -29923.6 -29287.2 2.590952 0.987081

2 1 13 1214 -51677 -48095.6 100 1.498592

2 1 14 1134 -50014.1 -48757.2 1.854483 0.859379

2 1 15 1428 -60835.9 -57818.5 7.123663 1.364025

2 1 16 1793 -76509.6 -72290.1 3.835422 1.426551

2 1 17 2861 -121968 -115646 3.604319 1.408393

2 1 18 945 -40375.8 -38227.2 3.631381 1.339872

2 1 19 3015 -128478 -125796 5.779932 1.182146

2 1 20 824 -35099.2 -33858.9 3.560629 1.222323

3 2 1 108 -4971.59 -4976.25 0.099239 0.111046

3 2 2 859 -36657.8 -37906.2 1.057556 0.570377

3 2 3 2178 -96569.6 -91157.2 77.52298 0.938038

3 2 4 1713 -75374.9 -73400.2 1.208891 0.758241

3 2 5 322 -14766.7 -14839.2 0.331603 0.108061

3 2 6 2407 -106802 -105884 0.781625 0.565653
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3 2 7 2008 -84655.2 -81952 1.235869 1.119868

3 2 8 3323 -138609 -138804 2.273637 0.927364

3 2 9 667 -28296.5 -29364.5 1.361384 0.658704

3 2 10 4288 -183606 -168790 1.001847 1.372997

3 2 11 1775 -81918.4 -81917.4 3.44E-08 0.007485

3 2 12 1775 -81947.2 -69883.5 69.69383 1.280999

3 2 13 1207 -56367.5 -46324.6 60.17603 1.322825

3 2 14 1177 -50304.9 -46704.1 1.111115 1.296121

3 2 15 788 -33748.6 -30166 0.917922 1.457755

3 2 16 3176 -133274 -134770 1.382532 0.834053

3 2 17 695 -29767.7 -28455.5 1.154172 1.030427

3 2 18 2109 -90432.2 -85060.9 0.979474 1.150862

3 2 19 3704 -152250 -143697 1.661221 1.424304

3 2 20 2894 -123534 -119392 0.967682 1.022117

4 1 1 526 -22384.5 -24034.6 39.79382 0.313904

4 1 2 2181 -92938.3 -86848.3 6.115076 1.970737

4 1 3 1899 -83804.1 -83042.4 1.859269 0.838853

4 1 4 3819 -162739 -159815 5.568746 1.396205

4 1 5 2619 -112196 -112197 4.484998 1.095484

4 1 6 1753 -74981.4 -77285.4 3.984234 0.784049

4 1 7 1448 -61650.7 -63211.9 5.191696 0.942568

4 1 8 114 -4851.4 -5184.26 38.1966 0.386706

4 1 9 258 -11023.4 -11519 7.124152 0.628839

4 1 10 1422 -60665.2 -58185 6.183888 1.51685

4 1 11 647 -28464.8 -29493 1.976165 0.337191

4 1 12 134 -5894.35 -6147.46 0.91364 0.228161

4 1 13 402 -18451 -18450.9 0.668469 0.210904

4 1 14 196 -8401.4 -8901.38 0.985317 0.405714

4 1 15 815 -34719.2 -36654.9 2.771622 0.562126

4 1 16 49 -2123.87 -2147.7 2.407135 0.756388

4 1 17 2389 -101784 -102248 6.879742 1.155182

4 1 18 1059 -45090.1 -44218.8 8.053346 1.411199

4 1 19 396 -16956.7 -15751.8 5.675449 1.703004

4 1 20 284 -12180.9 -12697.3 2.326742 0.58869

5 1 1 1207 -51908.9 -51971.4 3.454045 1.110179

5 1 2 3059 -132025 -129068 3.968423 1.342237
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5 1 3 1071 -45742.4 -44498.1 5.569852 1.459194

5 1 4 1415 -60602.8 -59157.5 3.265753 1.443999

5 1 5 1173 -50117.9 -52147.3 10.79762 0.711548

5 1 6 678 -28980 -29028.2 3.616434 1.156091

5 1 7 443 -19002.2 -18179.6 3.623336 1.617607

5 1 8 1505 -64762.6 -65450.5 2.641337 1.002699

5 1 9 713 -30835 -31880 6.79236 0.67447

5 1 10 4666 -198887 -208196 2.486891 0.690922

5 1 11 847 -36249.3 -32917.6 2.398916 2.160517

5 1 12 385 -16589.1 -17187.5 2.116019 0.677124

5 1 13 1125 -50101.2 -50158.2 1.454903 0.670774

5 1 14 273 -11924.7 -12203 1.400592 0.681927

5 1 15 21 -935.283 -967.998 0.791703 0.10198

5 1 16 37 -1581.51 -1707.44 99.99999 0.029255

5 1 17 467 -20257.2 -19776.9 3.008538 1.139379

5 1 18 732 -31684.9 -31361.1 5.335665 1.122488

5 1 19 1120 -47952.9 -49505.2 4.003602 0.81686

5 1 20 614 -26901.5 -28067.2 1.233643 0.3481

6 2 1 735 -31539.4 -29424.4 1.105023 1.117953

6 2 2 1493 -59412.2 -62037.2 1.663968 0.902007

6 2 3 1812 -76287.6 -69608 1.005909 1.451146

6 2 4 996 -42407.1 -38258.5 0.880398 1.432364

6 2 5 531 -23633.6 -23271.5 0.751594 0.564811

6 2 6 2438 -105468 -95862.7 0.810325 1.251926

6 2 7 1210 -50211.9 -44731.7 1.288546 1.600027

6 2 8 317 -13711.9 -13064.2 0.889258 0.951395

6 2 9 1297 -56429.2 -55628.7 0.818762 0.714589

6 2 10 436 -18535.8 -17016 0.814714 1.197823

6 2 11 3141 -138166 -136371 0.575758 0.627416

6 2 12 272 -12354.3 -11565.7 99.53492 0.716011

6 2 13 3745 -154166 -146216 1.182526 1.314665

6 2 14 1254 -54264.3 -50667 0.757358 1.090103

6 2 15 1304 -59126.5 -47063.2 77.54775 1.802036

6 2 16 2223 -93761.8 -89115.4 0.979683 1.141275

6 2 17 418 -17993.7 -16226.5 1.073568 1.194937

6 2 18 287 -12967.4 -12914 0.353848 0.369811
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6 2 19 1469 -63537.7 -61475.9 0.884735 0.852802

6 2 20 1221 -51097.9 -48322.7 0.967682 1.224118

7 1 1 86 -3659.83 -3527.94 76.33327 1.150586

7 1 2 1453 -61841 -62753 91.15481 0.870367

7 1 3 635 -27023.1 -24074.9 76.3932 1.993097

7 1 4 938 -40079.4 -39796.1 3.69854 0.979546

7 1 5 664 -28658.3 -28850.7 2.38338 0.784076

7 1 6 1375 -58541.5 -53865 6.604801 1.740598

7 1 7 778 -33108.7 -31447.4 99.99989 1.447663

7 1 8 376 -16001.1 -16239.2 76.39337 0.873182

7 1 9 887 -37803 -37221.2 2.793055 1.116807

7 1 10 21 -893.679 -959.595 38.18243 0.293264

7 1 11 1349 -57651.4 -54963.9 3.386625 1.367242

7 1 12 292 -12426.4 -13249.4 38.19263 0.366788

7 1 13 1163 -49680.4 -48988.4 1.682929 1.076938

7 1 14 1963 -83614.6 -77268.9 4.833681 1.735934

7 1 15 818 -34922.4 -33781.7 5.861298 1.249318

7 1 16 1514 -64863.7 -65332 2.671415 0.852364

7 1 17 2491 -106261 -102626 3.22747 1.315209

7 1 18 867 -36923.7 -35433.4 7.311765 1.357056

7 1 19 1191 -51289 -48688.2 3.191925 1.372127

7 1 20 998 -42650.8 -39555.8 3.46028 1.601074

8 2 1 3803 -158301 -155782 1.164843 0.972915

8 2 2 4246 -177405 -165843 1.265171 1.23615

8 2 3 3264 -148626 -136295 77.4455 0.857876

8 2 4 2239 -94005.8 -98041.2 1.021509 0.560308

8 2 5 4663 -199067 -201451 0.911364 0.653619

8 2 6 1605 -74072.7 -74072.7 9.3E-09 9.3E-09

8 2 7 1319 -53710.4 -54441.7 2.281018 0.902918

8 2 8 1158 -50826.3 -48861 0.760287 0.76323

8 2 9 2944 -131288 -112931 65.78885 1.376602

8 2 10 577 -26127.7 -25003.1 0.307964 0.612133

8 2 11 1584 -68839.6 -59716.7 0.784149 1.473457

8 2 12 2490 -103892 -108001 1.371473 0.628896

8 2 13 1399 -63504.4 -54213.1 99.42059 1.294673

8 2 14 3914 -167969 -163116 0.805177 0.858727
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8 2 15 1557 -68838.1 -67635.6 0.61816 0.591616

8 2 16 3520 -149584 -145596 1.294117 0.902779

8 2 17 832 -35507.7 -34378.6 1.270234 0.880409

8 2 18 1206 -51301.5 -48406.2 1.322736 1.064098

8 2 19 1755 -80595.3 -68707.1 63.92637 1.169551

8 2 20 1527 -68757.2 -61666.2 60.29398 1.006837
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